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Abstract
Analytical solutions to the (3+1)-dimensional nonlinear Schrödinger equation
(NLSE) are obtained. It is the first time to our knowledge that analytical
solutions to the three-dimensional NLSE with varying coefficients have been
derived. The solutions are the generalization of analytical solutions to the
one-dimensional NLSE. The properties of the amplitudes and the phases of the
solutions are investigated.

PACS number: 42.65.Tg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The analytical solution to the one-dimensional (1D) normalized nonlinear Schrödinger
equation [1, 2] in nonlinear optics (or the Gross–Pitaevskii equation (GPE) in the context
of Bose–Einstein condensate [3]) i ∂u

∂t
+ 1

2
∂2u
∂x2 + |u2|u = 0, has been obtained by various kinds

of methods, such as inverse scattering transformation [4], Darboux–Bäcklund transformation
[5], self-similarity technique [6] and variational method [7] as well as the moment method [8].
The analytical soliton solution is in the form of the traveling wave hyperbolic secant function
u = η sech η(t + vx + θ0) ei(−kt+ 1

2 (η2−v2)x+ϕ0), where η and v represent the amplitude and the
velocity of the soliton. However, no analytical solutions to the higher-dimensional NLSE have
been obtained, to the best of our knowledge. In this paper, we study the (3+1)-dimensional
(3D) generalized nonlinear Schrödinger equation (GNLSE) in the presence of gain (loss) γ
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and a harmonic potential 1
2 sρ2; most importantly, all the coefficients are variable along with

evolution time t:

i
∂u

∂t
+

1

2
β(t)	u + χ(t) |u|2 u − iγ (t)u +

1

2
s(t)ρ2u = 0, (1)

where 	 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace operator, ρ2 = x2 + y2 + z2, and β and χ are the
diffractive (or dispersive) coefficient and nonlinear coefficient, respectively. In the context
of Bose–Einstein condensate, equation (1) is also called the Gross–Pitaevskii equation which
governs the evolution of matter waves. The NLSE (GPE) model is a universal nonlinear
model that appears in many branches of physics and applied mathematics, including nonlinear
optics [9, 10], condensed matter and plasma physics [11–13], nonlinear quantum field theory,
fluid mechanics, etc. While 1D NLSE with varying parameters is always utilized to describe
the problems of dispersion and nonlinearity management [14, 15], few NLSEs with higher
dimensions and with varying parameters have been investigated.

2. Analytical solutions to the 3D GNLSE

Our strategy to solve partial equation (1) is as follows: considering that the 1D NLSE possesses
the traveling wave hyperbolic secant function solution, and the hyperbolic secant function is
a special case of the Jacobi elliptic function, we search for the traveling wave Jacobi elliptic
function solution to the 3D GNLSE. And a vortex phase a(x2 + y2 + z2) is set to reflect
a rotation-invariable feature of the 3D GNLSE. According to the strategy, we look for the
solution to the 3D GNLSE (1) in the form

u(t, x, y, z) = A(t, x, y, z) eiB(t,x,y,z), (2)

where A = f0(t) + f1(t)F (θ) + f−1(θ)F−1(θ) and B = a(t)ρ2 + b(t)(x + y + z) + c(t).
F(θ ) is a Jacobi elliptic function which is the solution of the ordinary differential equation
(F ′)2 = q0 + q2F

2 + q4F
4, θ(t, x, y, z) = k(t)x + l(t)y + p(t)z + w(t)t is the traveling

wave variable, F−1(θ) = 1/F (θ), and by incorporating t into w(t), θ is rewritten as
θ(t, x, y, z) = k(t)x + l(t)y + p(t)z + w(t). a is the curvature of the wave-front, the spatial
frequency shift b is relative to the parallel motion of the wave-front and c is the homogeneous
phase shift. All the coefficients are time dependent.

Substituting equations (2) into (1), we get the coupling equations:

∂A

∂t
+ β

[
∂A

∂x

∂B

∂x
+

∂A

∂y

∂B

∂y
+

∂A

∂z

∂B

∂z
+

A

2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
B

]
− γA = 0, (3)

−A
∂B

∂t
+

β

2

[
∂2A

∂x2
+

∂2A

∂y2
+

∂2A

∂z2
− A

(
∂B

∂x

)2

− A

(
∂B

∂y

)2

− A

(
∂B

∂z

)2
]

+ χA3 +
1

2
s(x2 + y2 + z2)A = 0. (4)

Further substituting the expressions of A, B, θ into (3) and (4), utilizing the properties of the
elliptic function and imposing the coefficients of xqF n, yqF n (q = 0, 1, 2; n = 0, 1, 2, 3)

(F ′ being separately equal to zero), we obtain a system of algebraic or first-order ordinary
differential equations for fi, k, l, ω, a, b and c, from which we obtain the results of the
coefficients:

f0 = 0; fi = fi0 e
∫ t

0 (γ−3aβ) dt ′ (i = 1,−1), (5a)

w = −
∫ t

0
βb(k + l + p) dt ′ + w0, (5b)
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Table 1. Relations between the values of (q0, q2, q4) and corresponding F(ξ ) in the ordinary
differential equation F′2 = q0 + q2F2 + q4F4

q0 q2 q4 F
′2 = q0 + q2F2 + q4F4 F

1 −(1 + m2) m2 F′2 = (1 − F2) (1− m2F2) sn ξ, cd ξ = cn ξ

dn ξ

1 − m2 2m2 − 1 −m2 F′2 = (1 − F2) (m2F2 + 1− m2) cn ξ

m2 − 1 2 − m2 −1 F′2 = (1 − F2) (F2 + m2 − 1) dn ξ

m2 −(1 + m2) 1 F′2 = (1 − F2) (m2 − F2) ns ξ = (sn ξ)−1,

dc ξ = dn ξ

cn ξ

−m2 2m2 − 1 1 − m2 F′2 = (1 − F2) [(m2 − 1)F2 − m2] nc ξ = (cn ξ )−1

−1 2 − m2 m2 − 1 F′2 = (1 − F2) [(1 − m2)F2 − 1] nd ξ = (dn ξ )−1

1 2 − m2 1 − m2 F′2 = (1 + F2) [(1 − m2)F2 + 1] sc ξ = sn ξ

cn ξ

1 2m2 − 1 −m2 (1 − m2) F′2 = (1 + m2F2) [1 + (m2 − 1)F2] sd ξ = sn ξ

dn ξ

1 − m2 2 − m2 1 F′2 = (1 + F2) (F2 + 1 − m2) cs ξ = cn ξ

sn ξ

−m2 (1 − m2) 2m2 − 1 1 F′2 = (F2 + m2) (F2 + m2 − 1) ds ξ = dn ξ

sn ξ

k = k0 e−2
∫ t

0 βadt ′ , l = l0 e−2
∫ t

0 βadt ′ , p = p0 e−2
∫ t

0 βadt ′ , (5c)

c =
[∫ t

0

β

2
(k2 + l2 + p2)q2 − 3β

2
b2 + 3χf1f−1

]
dt ′ + c0, (5d)

b = b0 e−2
∫ t

0 βadt ′ , (5e)

a′ = −2βa2 +
s

2
, (5f )

χ = −k2 + l2 + p2

f 2
1

βq4 (when f1 �= 0) or χ = −k2 + l2 + p2

f 2
−1

βq0 (when f−1 �= 0)

(5g)

f−1 = ±
√

q0

q4
f1 (when f1 �= 0 and f−1 �= 0). (5h)

What is amazing and delectable is that all the formulas are self-consistent and self-contained,
which means that our solving procedure is successful.

The only necessary and sufficient condition for the existence of the Jacobi elliptic function
solution to the 3D GNLSE is that the nonlinearity and the dispersion should fulfill a certain
relation expressed by equation (5g). This condition is actually a generalized constraint
for the generalized NLSE to have elliptic function solutions including the hypersecant and
hypertangent soliton solutions.

As for the 1D NLSE with varying parameters, solitons exist only under certain conditions
[14, 15]. From equation (5) of [14], the necessary condition for the 1D GNLSE to have soliton
solutions is χ = cβ, where c is a constant, and equation (1) in [14] can be normalized so
as that χ = ±β. In our paper, constraint (5g) results in χ = −q4β assuming that k0 = 1,
l0 = p0 = 0, f10 = 1, γ = 0 and a = 0. As for elliptic functions, cn ξ → sech ξ when m = 1
and then q4 = −1 (see table 1) and χ = β is obtained in this case; sn ξ → tanh ξ when m = 1
and then q4 = 1 and χ = −β. This is consistent with the above special case in [15] as well
as the 1D normalized equation in the introduction with constant coefficients.
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So the condition for the existence of the soliton solutions of the 1D NLSE is just a special
case of the constraint in our paper. This constraint can be realized in some situations, especially
in the case of constant coefficients. This constraint applies to the physically relevant systems
apart from the cases when γ = s = a = 0.

Substituting the resulting expressions (5a)–(5h) into equation (2), we get the following
analytical solutions (6) and (7) to the 3D GNLSE. Solutions (6) and (7) are the single elliptic
function and hybrid elliptic function solution, respectively:

u(t, x, y, z) = f10 e
∫ t

0 (γ−3aβ)dt ′ F(θ) ei[a(x2+y2+z2)+b(x+y+z)+c] (f−1 = 0), (6)

or

u(t, x, y, z) = f10 e
∫ t

0 (γ−3aβ)dt ′
[
F(θ) ±

√
q0

q4
F−1(θ)

]
ei[a(x2+y2+z2)+b(x+y+z)+c]

(f1 �= 0 and f−1 �= 0), (7)

where a is determined by equation (5f ) and the initial condition, θ = (k0x+l0y+p0z) e−2
∫ t

0 βadt ′

− ∫ t

0 βb0(k0 + l0 + p0) e−4
∫ t ′

0 βadt ′′dt ′ + w0, b = b0 e−2
∫ t

0 βadt ′ , and c = [
q2

2

(
k2

0 + l2
0 + p2

0

) −
3
2b2

0

] ∫ t

0 β e−4
∫ t ′

0 βadt ′′dt ′ + c0 in equation (6) or c = [
q2

2

(
k2

0 + l2
0 + p2

0

) − 3
2b2

0 ∓
3
√

q0q4
(
k2

0 + l2
0 + p2

0

)] ∫ t

0 β e−4
∫ t ′

0 βadt ′′dt ′ + c0 in equation (7).
When s = 0, the solutions can be greatly simplified. In this case, a = a0

1+2a0
∫ t

0 βdt ′
= εa0,

where ε =
(

1 + 2a0
∫ t

0 βdt ′
)−1

. When a0 �= 0, the solutions are respectively

u = f1,0ε
3/2 e

∫ t

0 γ dt ′F(θ) ei[a(x2+y2+z2)+b(x+y+z)+c], (6a)

and

u = f1,0ε
3/2 e

∫ t

0 γ dt ′
[
F(θ) ±

√
q0

q4
F−1(θ)

]
ei[a(x2+y2+z2)+b(x+y+z)+c], (7a)

where θ = ε(k0x + l0y + p0z) + b0
2a0

(k0 + l0 + p0)(ε − 1) + w0, b = εb0 and

c = 1−ε
4a0

[(
k2

0 + l2
0 + p2

0

)
q2 − 3b2

0

]
+ c0 in equation (6a) or c = 1−ε

4a0

[(
k2

0 + l2
0 + p2

0

)
q2 −

3b2
0 ∓ 6

√
q0q4

(
k2

0 + l2
0 + p2

0

)]
+ c0 in (7a). If the initial curvature of the wave-front is a0 = 0,

the solutions are

u(t, x, y, z) = f10 e
∫ t

0 γ dt ′F(θ) ei[b(x+y+z)+c], (6b)

or

u(t, x, y, z) = f10 e
∫ t

0 γ dt ′
[
F(θ) ±

√
q0

q4
F−1(θ)

]
ei[b(x+y+z)+c], (7b)

where b = b0, θ = k0x + l0y + p0z − b0(k0 + l0 + p0)
∫ t

0 βdt ′ + w0, c = [
q2

2

(
k2

0 + l2
0 + p2

0

) −
3
2b2

0

] ∫ t

0 βdt ′ + c0 in equation (6b) or c = [
q2

2

(
k2

0 + l2
0 + p2

0

) − 3
2b2

0 ∓ 3
√

q0q4
(
k2

0 + l2
0 + p2

0

)]∫ t

0 βdt ′ + c0 in equation (7b).

3. Analyses and discussions

In order to manifest the solution, we substitute equation (6) into equation (1), where we set
the following analytical parameters: γ = 0.1 cos t , β = 3 cos t

2(2 sin t + 4t + 1)
, s = 4(2 + cos t)

3(2+sin t)
, so that

the explicit wave-front curvature a = 2 sin t + 4t + 1
3 sin t + 6 and the spatial frequency shift b = 2

2 + sin t
are

derived. The nonlinear coefficient is χ = k2
0 + l2

0 + p2
0

f 2
10

q4
3 cos t (2 + sin t)

4(2 sin t + 4t + 1)
e−0.2 sin t according to the

4
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Figure 1. 3D intensity |u(t, x)|2 plots of Jacobian sn (rows 1 and 2) and Jacobian cn function
(row 3) solutions. The varying parameters are set as β = 3 cos t

2(2 sin t + 4t + 1)
, s = 4(2 + cos t)

3(2 + sin t)
and a0 = 1

6

in row 1; β = 3 cos t
2(2 sin t + 4t + 1)

, s = 0 and a = 0 in rows 2 and 3; γ = 0.1 cos t in columns 1 and 2,
γ = 0.02 in column 3 and γ = 0 in column 4. The first two columns correspond to m = −0.5
and m = 0, respectively, and the last two columns correspond to m = 1. The label of the spatial
coordinate axis is ξ = k0x + l0y + p0z.

constraint (5g). We find that equation (1) is satisfied, which proves that equation (6) is just
the solution to equation (1). It should be pointed out that the functions γ , β and s are chosen
ad hoc in order to get analytical expressions for the parameters a, b and χ , and to simplify the
calculation.

There are 12 different Jacobi elliptic functions, each of which is differentiated by different
order m (see table 1). Jacobi elliptic functions degenerate into triangular functions when
m = 0, and hyperbolic functions when m = 1. The amplitude of the light wave or matter wave
should be finite; thus, the elliptic functions that end with ‘s’ (ns, cs, ds) cannot be selected to
be the amplitude function. All that end with ‘n’ (sn, cn, dn) can absolutely be the amplitude
function in any order, and all that end with ‘d’ or ‘c’ can be the amplitude function in some

orders. As for the hybrid solution, only F(θ) = cn(θ,m) ±
√

m2−1
m2 nc(θ,m)(m > 1) and

F(θ) = dn(θ,m) ± √
1 − m2nd(θ,m)r (−1 < m < 1) can be wavefunctions.

Depicted in figure 1 are the wave intensities of Jacobi sn (rows 1 and 2) and Jacobi
cn solution (row 3). Without losing generality, the initial conditions are set to be b0 = 1,
w0 = c0 = 0, f10 = 1. The varying parameters are still set as β = 3 cos t

2(2 sin t + 4t + 1)
, s = 4(2 + cos t)

3(2 + sin t)

and a0 = 1
6 in row 1, which depicts the general case; β = 3 cos t

2(2 sin t + 4t + 1)
, s = 0 and a = 0 in

rows 2 and 3. We set γ = 0.1 cos t in columns 1 and 2, γ = 0.02 in column 3 and γ = 0 in
column 4. The first two columns correspond to m = −0.5 and m = 0, respectively, and the
last two columns correspond to m = 1.

The conventional one-dimensional hyperbolic secant (hyperbolic tangent) soliton [16, 17]
solution is the special case of our results (see the last figures in rows 2 and 3). In these cases,
χ and β must be of the same sign for hypersecant (bright) soliton and of the contrary sign

5
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Figure 2. 3D intensity |u(t, x)|2 of Hybrid Jacobi elliptic function solutions, where F(θ) =
dn(θ,m) +

√
1 − m2nd(θ, m) (left) and F(θ) = dn(θ, m) − √

1 − m2nd(θ,m) (right). The
parameters are set to be m = 0.5, γ = 0.5 cos t , β = cos 0.5t , s = 0 and a = 0. The label
of the spatial coordinate axis is ξ = k0x + l0y + p0z.

for the hypertangent (black) soliton solution which derived from the necessary condition (5g).
The periodical gain (loss) periodically amplifies (deduces) the amplitude of the intensity, and
net gain (loss) amplifies (deduces) the amplitude.

In the case of planar wave-front (i.e. a = 0), the energy conserves provided that there is no
gain (loss) (see the lower two lines in figure 1); however, in the case of spherical wave-front
(i.e. a �= 0), the energy fluctuates along with time even if there is no gain (loss), as shown
in the upper row in figure 1. This phenomenon has never been found before. We think that
the nonconservation of the energy is mathematically due to the presence of the wave-front
curvature, and physically due to the presence of the potential. When s �= 0, the wave-front a
will never be zero, which can derived from equation (5f ). Hence, the coefficient of the elliptic
function in equation (7) will vary along with time t, which results in the nonconservation of
energy. In fact, an adscititious potential of course changes the total energy of the system.

Figure 2 depicts the hybrid Jacobi elliptic function solutions F(θ) = dn(θ,m) +√
1 − m2nd(θ,m) (left) and F(θ) = dn(θ,m) − √

1 − m2nd(θ,m) (right), where the
parameters are set to be m = 0.5, γ = 0.5 cos t , β = cos 0.5t , s = 0 and a = 0. These
solutions have never been obtained before, and they are absolutely different from the single
elliptic function solutions.

When the potential is absent, and an initial wave with a wave-front curvature (a0 �= 0)
is input, the curvature of the phase wave-front evolves in the form of a = a0

1 + 2a0
∫ t

0 βdt ′
, but

the curvature center fixes at
(
− b0

2a0
, − b0

2a0
, − b0

2a0

)
. If the initial wave-front is a planar one

(a0 = 0), it remains a planar wave-front. The presence of the potential complicates the phase
of the solution. Even if the initial wave-front is a planar one, it will evolve into a spherical
wave-front, and both the curvature a and its center

(− b
2a

, − b
2a

, − b
2a

)
will vary along with

time, where a and b are determined by equations (5f ) and (5e), respectively.

4. Conclusions

We obtain analytical solutions to the 3D GNLSE with time-dependent coefficients for the first
time to our knowledge. The solutions are in the form of the traveling wave elliptic functions,
which are the generalizations of the conventional hyperbolic function soliton solutions to the
1D NLSE. The method that we use to solve the NLSE will pave the way to new methods for
solving high-dimensional partial differential equations.
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